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Abstract. Molecular dynamics (MD) simulations have been used to study the translational and
rotational relaxation of model spherical nanocolloidal particles in solution at infinite dilution.
The solvent was modelled at the molecular level. Simulations were carried out with two
types of model nanocolloidal particle, one that was smooth (‘structureless’) and the other built
from a cluster of atoms (‘rough’). Both types had variable diameter,σc, compared to that
of the solvent molecule,σs . The Weeks–Chandler–Andersen (WCA) interaction between the
colloid and the WCA solvent molecules was used. Nanocolloidal particles that were up to an
order of magnitude larger than those of the solvent molecules were simulated. The effects of
the relative solvent and colloidal particle mass density, and colloid size on the translational
and rotational self-diffusion coefficients were investigated. At liquid-like number densities
(ρs = Nσ 3

s /V ' 0.9) the translational,D, and rotational,Drot , self-diffusion coefficients for the
nanocolloids of all sizes were statistically independent of the ratio of colloidal to solvent particle
mass density for the the values, up to'4.0, explored. As solvent number density decreased, the
translational self-diffusion coefficients of the colloidal particles showed more evidence than the
rotational self-diffusion coefficients of a decrease with increasing colloid particle density. Both
D andDrot decreased with increasing size of the colloidal particle in close agreement with the
classical solutions, the Stokes–Einstein and Stokes–Einstein–Debye relationships respectively.
Differences in the translational diffusion coefficients of smooth and rough colloidal particles
were not statistically significant atρs = 0.9, but atρs = 0.7 theD were lower for the rough
particles. Reorientational motion occurred by small-step diffusion.

1. Introduction

The complexity of colloidal liquids prohibits exact analytic treatments of their dynamical
and physical properties in all but the most idealized of cases (e.g., macroscopic spheres at
infinite dilution). There are now a number of so-calledmesoscalediscrete particle simulation
techniques that have been developed to provide approximate treatments of these systems,
which treat the faster solvent degrees of freedom in an approximate way, concentrating
on the slower (usually more important) degrees of freedom associated with the colloidal
particle’s translational and, sometimes, rotational trajectories. Examples of such techniques
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include Brownian dynamics (Ermak 1975), and lattice Boltzmann (Benziet al 1992) and
dissipative particle dynamics (DPD) (Marshet al 1997). A problem with these techniques
at finite colloid volume fraction is that, because of the slow decay of hydrodynamic effects
(with an∼r−1 distance dependence), the consequences of truncation effects in approximate
treatments are rather difficult to quantify and consequently there is no near-exact solution
for the dynamics of dense suspensions.

With recent advances in computer power it has now become feasible to study the
dynamical behaviour and other physical properties of nanocolloid liquids using the molecular
dynamics, MD, method (Hansen and McDonald 1986). (Nanocolloid liquids contain small
colloidal particles in the nm range.) MD can be used to simulate both the colloidal
particles and solvent molecules simultaneously by numerical integration of Newton’s
equations of motion for all molecules in the system. It therefore has fewer assumptions
than the mesoscale modelling methods, and can give much more detail (for example, it
automatically incorporates the many-body hydrodynamic effects), but of course currently
is limited to much smaller model colloidal particles. With present-day computational
resources, MD is limited to exploring the transition region between simple liquids and
typical colloidal liquids (i.e., where the particles are in the 0.1–1µm range) which is
nevertheless an interesting region because it encompasses the regime in which several
characteristic timescales, which can be well separated for micron-sized colloidal particle
systems, overlap.

The Stokes–Einstein and Stokes–Einstein–Debye formulae provide a good theoretical
description for, respectively, translational and rotational diffusion of micron-sized spheres
in the infinite-dilution limit (Hansen and McDonald 1986). No satisfactory comparable
treatment for nanocolloidal particles exists, and in response in this study MD simulations
of model nanocolloidal particles in solution at infinite dilution have been undertaken.
Simulations were carried out in the absence of gravity with both smooth and atomistically
rough particles with variable diameters compared to those of the solvent molecule. A
preliminary study of the present MD model was reported recently which focused on the
technical aspects of the cluster construction and system-size effects (Heyeset al 1996).
In this work these techniques have been used to compute the translational and rotational
diffusion coefficients, and their dependence on colloidal particle size and the ratio of the
mass density of the colloidal particle to that of the bulk solvent.

2. Computational details

The MD computer simulations had one model colloidal particle and many solvent mol-
ecules in a cubic simulation box. First we consider the law of interaction between the
molecules.

2.1. Solvent molecules

The solvent–solvent molecule interactions were the purely repulsive Weeks–Chandler–
Anderson, WCA, potential (Weekset al 1971) which is a potential formed out of the
repulsive part of the Lennard-Jones, LJ, potential (Hansen and McDonald 1986) shifted
upwards by the minimum energy,ε, and truncated at the potential minimumrm = 21/6σs ,
whereσs is the diameter of the particle. One of the advantages of the WCA potential is
that it is short ranged and therefore the temporal evolution of the solvent can be computed
relatively efficiently. For the system sizes considered here, almost all of the computer time
is spent in generating the trajectories of the solvent molecules. With available computing
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facilities it was not possible to model a more realistic model solvent, such as a Lennard-
Jones liquid. The solvent number densityρs = Nσ 3

s /V for N molecules in a volumeV .
Two types of model colloidal particle were considered.

2.2. Smooth colloidal particle

In the first type, the nanoparticle had a single centre of interaction with the solvent molecules.
The potential originated from the centre of the model colloidal particle. The WCA potential
was modified to reflect the volume of the colloid particle (Rullet al 1989):

u(r) =

 4ε

((
σs

r − α
)12

−
(

σs

r − α
)6)
+ ε for r 6 rm

0 for r > rm.

(1)

This model for the colloid has been used by us before in previous publications—for example,
Nuevoet al (1995). The advantage of this analytic form is that it is a simple generalization
of the solvent–solvent potential. The central potential field is shifted out a further radial
distance,α, while retaining the same curvature as between two solvent molecules (i.e.,
the case whenα = 0) which minimizes any numerical algorithmic errors in updating the
particle positions. The cut-off separation,rm, for this potential isrm = α + 21/6σs . An
alternative procedure would have been to have used the WCA form with the combining
rules σcs = (σc + σs)/2 whereσc is the diameter of the colloidal particle. The cut-off is
then rm = 21/6σcs . A comparison between these two potential forms allows us to relateα

to an equivalent core diameter for the colloidal particle. That is,σcs ≈ σs + α, which gives
σc ≈ σs + 2α.

The mass of the model colloidal particle,Mc, ranged through 0.3 < Mc/m < 4.0,
wherem is the mass of the solvent molecule, which enabled us to explore the effects of the
relative densities of the model nanocolloid and the bulk solvent, i.e.,∼Mcσ

3
s /σ

3
c mρs .

2.3. Rough colloidal particle

A more realistic representation of a colloidal particle is to include the atomistic detail. Such
a procedure has been used before in simulation studies (e.g., Bajan-Nunez and Dickinson
1994). The second type of colloidal particle was atomistically discrete and in the form of
a cluster of atoms that was near-spherical. The cluster hadNclus atoms and it was able
to exchange energy and momentum with its surroundings in a realistic fashion. Also, as
the colloidal particle was atomistically rough it could exhibit rotational relaxation (unlike
the smooth model colloidal particle) on the fluid timescale by interaction and exchange
of momentum and energy with the solvent molecules. The solid amorphous cluster was
assembled out of atoms interacting via the Lennard-Jones potential,

φ(r) = 4εLJ

((
σ

r

)12

−
(
σ

r

)6)
(2)

without truncation and using an extremely large value of the well-depth energy compared
to that characterizing the solvent–solvent interaction energy, namely,εLJ/ε = 15. All of the
simulations were carried out at a reduced temperaturekBT/ε = 1. The extreme depth of the
cluster atom–atom interaction within the cluster was principally to eliminate surface melting
and loss of cluster atoms to the solvent during the simulation, which can easily happen for
smaller values because of the reduced coordination number in the surface region. The
reduced units used here are those characterizing the solvent, i.e.,m = ε = σs = 1. The
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cluster atoms and the solvent molecules had the same core diameter, i.e.,σ = σs . The
extremely deep LJ potential (compared withkBT ) held the atoms tightly together. The
simulation was carried out without the usual 2.5σLJ truncation distance so that each atom
was allowed to interact with all others in the cluster. These factors ensured that the cluster
would not break up during the simulation and would retain the same geometry. Also,
importantly, this removed any possibility of plastic deformation and any resulting sudden
change in energy of the cluster during a simulation, which could have affected the dynamics
of the cluster through the solvent.

The cluster was created from all of the atoms in a sphere placed around an arbitrary
fluid atom taken from an equilibrated liquid-state simulation configuration. This procedure
had the advantage that it ensured that there was a near-spherical amorphous starting state for
the cluster. The atoms captured within this sphere were then rapidly ‘frozen’ in essentially
the same position by introducing the strongly attractive LJ interaction between the atoms
as discussed above. The average number density of the atoms in the cluster so formed was
similar to that of the solvent atρ ' 0.9. The mass of each LJ atom on the cluster,mc,
ranged through 0.2 < mc/m < 4.0 which again enabled us to explore the effects of the
relative mass densities of the cluster and the solvent particles, albeit over a limited density
range. In this case the mass of the model nanoparticle wasMc = Nclusmc. Typically
the masses of the rough model colloidal particles were higher than those formed using the
smooth-particle method.

It was important that the structure of the cluster was chosen to model a rough sphere
that did not rearrange on timescales important for the dynamical features of interest here.
The clusters of rapidly ‘frozen’ particles were in a glassy state rather than being micro-
crystalline. Each cluster was probably not in its lowest free-energy state. After some time
(presumably long) it is conceivable that a fluctuation might cause a cluster to reorganize
into another local minimum with a slightly different structure. From the radial density
distribution functions from the centre of the cluster calculated at various times during the
simulation, we saw no evidence of such a reorganization during the simulations, as we
would expect as the effective reduced temperature for the atoms in the cluster wasε/15kB.
Nevertheless thermal equilibration was rapid on the timescale of the simulation and the
cluster atoms soon achieved the temperature of the solvent. There has been much interest
in the stability of small rare-gas cluster microstructures (e.g., Becket al 1987, Stillinger
and Stillinger 1990), although for the purposes of this work, the internal structure was not
of great significance—as long as it did not rearrange during the simulation.

Clusters containing up to 256 atoms were simulated where the total number of atoms in
the system,N , was 8000 in all cases. The larger the cluster, the larger the number of solvent
molecules has to be to remove significant finite-size effects. Finite-N effects are statistically
insignificant for systems containing above aboutN = 8000 solvent molecules and a cluster
consisting of about 100 atoms (Heyeset al 1996). The solvent density is approximated
by that of the original fluid prior to creating a cluster fromNclus of the solvent molecules
(atoms). Although there is some contraction of the space occupied by theNclus atoms, the
effect on the density of the remaining solvent molecules is negligible forN = 8000 or
higher.

The volume of the nanocolloids created by the above procedure is not known in advance.
The size of the cluster can be estimated from the mean square radius,r2

m, which is readily
computed as a time average:

r2
m =

(Nclus∑
i=1

mir
2
i

)/(Nclus∑
i=1

mi

)
(3)
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whereri is the vector position of atomi from the centre of mass of the cluster. The mass
of each atom,mi , was set equal to the same value,mc, in this study. The effective outer
radiusa of a homogeneous sphere is related to the mean square radius by integration and
assuming a homogeneous mass distribution:

a = (5r2
m/3)

1/2. (4)

The effective diameter of the cluster isσc = 2a. The moment of inertia of the sphere,
I = 2Mca

2/5 (Spiegel 1967) and thereforeI = 2r2
mMc/3. For clusters withNclus =

20, 50, 120, 144 and 256 we have, using equation (4) and the values ofr2
m obtained from

the simulations, diameters for the clustersσc/σ = 3.3, 4.5, 6.1, 6.4 and 9.1, respectively.

Table 1. Summary of some of the principal properties from theNclus = 256 rough-colloidal-
particle simulations. Key:ρs , solvent density;Nclus , number of LJ atoms in the cluster;NT ,
number of time steps in the production simulation;r2

m is the mean square radius calculated from
equation (3);Dtrans(clus) is the translational self-diffusion coefficient of the cluster;Dtrans(solv)
is the translational self-diffusion coefficient of the solvent molecules;Drot (clus) is the rotational
diffusion coefficient of the cluster from equation (10);ηs is the solvent shear viscosity obtained
from the appropriate Green–Kubo formula (Hansen and McDonald 1986);τω is the angular
velocity relaxation time from equation (8).mc/m is the ratio of the mass of an atom in the
LJ cluster (all the same) andm is the mass of a WCA solvent molecule. The self-diffusion
coefficients, relaxation times and shear viscosity are estimated to be uncertain to typically±5%.

NT Dtrans (clus) Drot (clus)
ρs Nclus mc/m /103 〈r2

m〉 /10−2 Dtrans(solv) /10−3 ηs τω

0.7 256 0.2 3225 9.0231 0.810 0.132 0.657 0.795 0.226
0.7 256 0.2 3725 9.0211 0.834 0.137 0.722 0.799 0.230
0.7 256 1.0 610 9.0466 0.769 0.133 0.580 0.817 1.121
0.7 256 1.0 2855 9.0399 0.653 0.131 0.721 0.800 0.998

0.9 256 0.2 1510 9.1018 0.219 0.0467 0.198 2.81 0.0656
0.9 256 1.0 1135 9.0934 0.200 0.0470 0.181 2.99 0.288
0.9 256 5.0 2780 9.0894 0.177 0.0474 0.213 2.83 1.611

1.0 256 1.0 1090 9.0565 0.0585 0.0211 0.0728 7.69 0.104
1.0 256 5.0 960 9.0571 0.0564 0.0216 0.0729 7.46 0.522
1.0 256 5.0 1770 9.0567 0.0565 0.0215 0.0710 7.45 0.533

2.4. Technical details of the simulations

The computations were made faster using link cells to construct a neighbourhood table of
near interactions (Fincham and Heyes 1985). The integration of the equations of motion
was carried out using the Verlet algorithm with periodic velocity rescaling at solvent
reduced densitiesρs = Nσ 3/V in the range 0.6–0.9 and at a reduced temperature of
kBT/ε = 1.0, wherekB is Boltzmann’s constant. The time step wash = 0.005σ(m/ε)1/2

and the simulations were carried out typically for'106 time steps. The time correlation
functions were evaluated using the fast Fourier transform, FFT, method (Fincham and Heyes
1985). The use of the FFT method was crucial to the feasibility of these simulations, as
dynamical processes took place on all timescales up to 80σ(m/ε)1/2 for the largest clusters
considered, ranging from rapid solvent and cluster angular momentum relaxation on the
(1–2)σ(m/ε)1/2 timescale to much slower cluster reorientational relaxation typically up
to at least the 80σ(m/ε)1/2 timescale depending on cluster size. The simulations were
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continued until adequate statistics was obtained for the modelled quantities (principally the
translational and rotational diffusion coefficients of the nanoparticles). The length of each
correlation function was such that it had statistically decayed to zero well within the period.
The model nanocolloidal clusters typically moved many times their mean diameters in a
simulation. This distance can be estimated from∼(6Dtsim)1/2 wheretsim is the duration of
the simulation andD is the translational self-diffusion coefficient of the nanocolloid. For
the systems and solvent states given in table 1 we have, for theNclus = 256 rough clusters,
displacements during the ‘production’ phase of the simulation of 3, 1.5 and 0.5 cluster
diameters at solvent densities ofρs = 0.7, 0.9 and 1.0 respectively. The displacements
were even larger for the smaller nanocolloids.

Even though we were nominally considering a system at infinite dilution, as there was
only one colloidal particle in the cell, the system was surrounded by periodic images of itself.
The solvent hydrodynamic disturbances caused by the model colloidal particle will re-enter
the cell via the periodic boundary condition construction and affect the colloidal particle’s
dynamics in an unpredictable manner. Hydrodynamic interactions are long ranged and,
unless the system size is large when compared with the colloidal particle, the interactions of
the particle with its own images could lead to serious artefacts in its dynamical evolution.
We therefore had to use a sufficiently large number of solvent molecules to bring any finite-N

effects to a tolerable and practicable minimum. In our previous study we made an extensive
assessment of these effects by carrying out simulations with varying numbers of solvent
molecules. We found for colloidal particles in the diameter range used here that'8000
solvent molecules were sufficient to eliminate any noticeable size effects on the translational
self-diffusion coefficients. We expect the size effects to be even smaller for rotational self-
diffusion, as the range of the hydrodynamical disturbance caused by rotational motion is
known to be less than that arising from translational motion. Based on this evidence, the
solvent system is large enough and the cluster particle is still sufficiently small that any
hydrodynamic (long-range) interference between the cluster images can be considered as
irrelevant, at least as far as the values of the self-diffusion coefficients is concerned. For
clusters containingNclus atoms then there wereN −Nclus solvent atoms, whereN = 8000.
For solvent reduced number densitiesρs = 0.7–0.9, the corresponding cubic simulation cell
sides were (23–21)σ respectively.

3. Theoretical background of rotational relaxation

For the rough model colloidal particles, the orientational dynamics can be described in a
compact way using the family of time correlation functions (Clarke 1978)

Cl(t) = 〈Pl(u(t) · u(0))〉 (5)

whereu is an arbitrary unit vector embedded in the cluster and passing through its centre,
andPl is thelth-order Legendre polynomial. The first rank (l = 1) is related to the infrared
absorption spectrum, the second rank (l = 2) to the Raman scattering spectrum, and all
ranks contribute to inelastic neutron scattering. More fundamental correlation functions
are the angular velocity autocorrelation function (ACF) in the principal-axis frame of the
cluster,ω,

Cω(t) = 〈ω(0) · ω(t)〉 (6)

and the torque ACF which however are not directly measurable by experiment. By
analogy with the translational diffusion coefficient it is possible to define the time-dependent
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rotational diffusion coefficient,Drot (t),

Drot (t) = kT

I

∫ t

0

(
1− s

t

)
Cω(s) ds = kT

I
τω (7)

whereI is the moment of inertia. The rotational diffusion coefficient,Drot , is the limit,
Drot (t →∞). The fact that the clusters are geometrically rigid on an atomistic scale and
essentially spherical enables their rotational motion to be readily characterized using asingle
rotational diffusion coefficient,Drot . The time-dependent angular velocity relaxation time,
τω(t), is derived fromCω(t):

τω(t) =
∫ t

0

(
1− s

t

)
Cω(s)

Cω(0)
ds. (8)

The rotational relaxation timeτω = τω(t → ∞). The Cω andCl are connected via the
cumulant expansion (Tildesley and Madden 1983)

ln(Cl(t)) = −l(l + 1)
kT

I

∫ t

0
(t − s)Cω(s) ds. (9)

This relation gives the correct limits. In the short-time limitt � τω, Cω(t) ' 1 and hence

ln(Cl(t)) ' −l(l + 1)kT t2/2I or Cl(t)t→0 ' 1− l(l + 1)kT t2/2I

so the short-time limit is in accord with the free-rotor model. In the long-time limit,t � τω,

ln(Cl(t)) ' −l(l + 1)kT τωt/2I or Cl(t)t→∞ ' exp(−l(l + 1)Drot t)

whereDrot = kT τω/I . On times longer than the inertial relaxation timescale forl = 1,

Drot = −1

2
lim
t→∞

d

dt
ln(C1(t)). (10)

Therefore we have two methods for extractingDrot for the model colloidal particle, viaCl

or Cω. The reorientational relaxation time,τu, for theP1-term in equation (5) is obtained
from τu = 1/2Drot .

Two independent procedures were used to define the unit vectoru. One was to calculate
the principal coordinate system of the starting configuration of the colloidal cluster and then
evolve one of these unit vectors with time using the quaternion technique used by Heyeset al
(1996) assuming a rigid structure, which is a good approximation for these geometrically
rigid clusters. The second (simpler to implement) approach was to find the two LJ atoms
that were the furthest apart in the cluster, and to use their separation vector as the basis for
the unit vector.

4. Results and discussion

4.1. Structure

The number density profile taken from the centre of an 120-atom rough cluster in a fluid at
solvent densityρs = 0.9 is shown in figure 1. It is seen to have a highly structured region
at small distances from the centre,r, arising from the atoms within the cluster as they are
essentially ‘frozen’ in their original liquid-state positions. The atoms are mainly distributed
into three well defined shells/bands. As the bands are quite structured and broad, it would
be difficult to discern any regular structure (e.g., FCC-like or some other well known regular
cluster structure). Figure 1 also shows that the density of the cluster (viamc/m values chosen
in the range 0.2–4.0) had no noticeable effect on these number density profiles, as would
be expected for a classical model. The solvent number density profiles exhibited density
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Figure 1. Number density profiles of atoms in theNclus = 120 rough cluster and the solvent
taken from the centre of the cluster at the solvent number densityρs = 0.9. The density profiles
are normalized with respect to the bulk solvent number density. The profiles for a range of
values 0.26 mc/m 6 4.0 are indistinguishable in this figure.

Figure 2. Density profiles of the solvent molecules around rough clusters of variable size. The
values ofNclus are given in the figure. The bulk solvent density wasρs = 0.9, and the density
profiles presented are normalized with respect to the bulk density.

oscillations next to the nanocolloid’s surface that gradually decayed away with distance
radially from the centre of the cluster. These indicate the presence of ‘layers’ of solvent
cages around the nanocolloid. At largerr the solvent number density profile is uniform,
approaching that of the bulk fluid. The oscillations in solvent number density become
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more pronounced and long ranged with increasingρs . Figure 2 shows the solvent radial
density profile arising from rough clusters of different sizes. There is evident significant
overlap between the cluster and solvent number density distributions, which ensured a strong
coupling between the trajectories of the solvent and cluster atoms with the possibility of
generation of substantial rotational motion of the cluster. Themc/m value chosen in the
range 0.2–4.0 had no noticeable effect on these solvent number density profiles.

4.2. Centre-of-mass motion

4.2.1. Time correlation functions.The normalized force and velocity autocorrelation
functions

CF (t) = 〈F (t) · F (0)〉〈F 2(0)〉 (11)

CV (t) = 〈v(t) · v(0)〉〈v2(0)〉 (12)

respectively were calculated, as were the time-dependent self-diffusion coefficients (Hansen
and McDonald 1986)

D(t) = (1/3)
∫ t

0
(1− τ/t)〈v(τ ) · v(0)〉 dτ. (13)

In practice the time correlation functions were integrated out to sufficiently long times (t)
that the 1−τ/t term had an insignificant effect on the value of the self-diffusion coefficient,
D (i.e.,D(t) in the t →∞ limit).

Figure 3. Normalized cluster force autocorrelation functions,CF (t), for theNclus = 120 rough
cluster in aρs = 0.9 solvent with mass ratios in the range 0.26 mc/m 6 4.0.

For the clusters the quantitiesF andv refer to the net (i.e., centre-of-mass) force and
velocity of the cluster. The self-diffusion coefficients show a decrease with increasing
density which is typical fluid behaviour. In figure 3, the nanocolloid force autocorrelation
functions (FACF) obtained from the 120-atom clusters atρ = 0.9 across a widemc/m
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range are presented. (The ratiomc/m is approximately the ratio of the mass densities
of the nanocolloidal particle and the bulk solvent mass density, as the particle number
densities of these are quite similar.) As the mass density of the cluster decreases, the
FACF shows increasing evidence of ‘backscattering’ behaviour, which is also reflected in
the velocity autocorrelation functions. As the density of the solute particle decreases, the
FACF demonstrates that it oscillates within its cage with increasing frequency.

There has been increasing interest in recent years in establishing the statistical
mechanical basis of the velocity relaxation of single spherical colloidal particles in a solvent
(e.g., Hinch 1975, Weitzet al 1989, Espag̃nol and Źuñiga 1995), and it is still far from
a solved problem. Interpretation and rationalization of this behaviour has been in terms
of several key relaxation times and their relative magnitudes. There is a characteristic
relaxation time of hydrodynamic relaxation of the solvent from disturbances on the scale of
the colloidal particle caused by the colloidal particle,τs ≈ σ 2

c /ηkin whereηkin = ηs/mρs
is the kinematic shear viscosity andηs is the shear viscosity. On the basis of the velocity
Langevin equation, we also have the relaxation time of the velocity of the colloidal particle,
τv ∼ Mc/ζ whereζ ∼ ηsσc is Stokes’s friction coefficient. Thereforeτs/τv ∼ mρsσ 3

c /Mc

which is also the ratio of the mass density of the bulk solvent to that of the colloidal particle
alone. In the limit ofτs/τv � 1 all of the dynamical processes are Markovian, and the
Langevin and Fokker–Planck equations can be assumed valid. In this limit the colloidal
particle’s velocity relaxation is exponential in time with a relaxation time ofτv. We see
that this will only happen if the mass density of the colloidal particle is much greater than
that of the bulk fluid (i.e., ifm/Mc → 0). This is, in principle, feasible in a simulation but
not of great practical use because such colloidal particles would sediment under gravity (if
greater than about a micron in size). In our simulations we were considering theτs ∼ τv
regime and we therefore do not have a clear separation of these two timescales, and the
velocity Langevin equation and the Fokker–Planck equation are not valid in this situation.
The ‘short-time’ departure from the Langevin prediction forD(τ) has been observed for
real colloidal liquids at infinite dilution using diffusive wave spectroscopy (DWS) (e.g.,
Zhu et al 1992). The overlap of these timescales and the coupling of these two dynamical
processes (solvent and colloid particle velocity relaxation) can be treated by assuming that
the fluid obeys fluctuating hydrodynamics and the colloid the generalized Langevin equation,
out of which emerges a long-time relaxation of the velocity autocorrelation function as
∼kBT/2π2σ 3

c ρst
3/2.

Most of our simulations were carried out in theτs ∼ τv region, so neither an algebraic
law decay (exponent 3/2) nor an exponential decay would be expected. In fact, due to the
statistical noise and the relatively short time range over which the correlation function is
known accurately, it is difficult to distinguish between these two analytic forms anyway. An
example intended to reveal the possibility of exponential relaxation is presented in figure 4,
which shows a log–linear plot of the nanocolloid’s velocity autocorrelation functions (VACF)
obtained from the 120-atom structured clusters atρ = 0.9 for 0.2 < mc/m < 4.0. It does
show that as the density of the particle increases, the VACF tends to the predicted exponential
form.

4.2.2. Diffusion coefficients.Despite the sensitivity of the form of the force and velocity
autocorrelation functions to the nanocolloid mass density there is little corresponding
variation in the value of the self-diffusion coefficient at liquid-like solvent densities. There is
a noticeable gradual decrease inD with increasing colloid mass at a solvent densityρs = 0.7
but no statistically significant variation atρs = 0.9. This may be seen in figure 5, which
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Figure 4. A log–linear plot of the velocity autocorrelation functions for the systems of figure 3.
The straight line is for exp(−t/τv) whereτv = Mc/3πηsσc. Using σc = 6.0 andηs = 2.95
we haveτv = 0.71mc/m for the largest density considered. The straight line corresponds to
mc/m = 4.0.

Figure 5. The colloid mass dependence of the self-diffusion coefficients for anNclus = 120
rough cluster at three values for the solvent density.

shows thems/m dependence ofD for the clusters ofNclus = 120 rough particles at various
solvent densities. Table 1 gives simulation data for clusters ofN = 256 particles, and it also
reveals that there is a decrease withmc/m in D for a solvent number density ofρ = 0.7
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Figure 6. The dependence of the translational self-diffusion coefficient onσ−1
c for two values of

the solvent density distinguishing between the behaviour of smooth and rough spheres. The lines
are the prediction of the Stokes–Einstein relationship using stick boundary conditions and based
on the shear viscosity of 0.84 atρs = 0.7 and 3.05 atρs = 0.9 obtained using the Green–Kubo
linear response method (Hansen and McDonald 1986). The masses for both types of cluster are
chosen in the range where the diffusion coefficients are mass independent (Mc/m = 1 for the
smooth nanocolloid andmc/m = 1 for the rough cluster.)

in the range where the density of the solute particle is greater than that of the solvent. The
mass dependence for theN = 256 cluster seems to be somewhat more pronounced at all
densities than for theN = 120 particles, which could be a finite-size effect originating
in the ‘backflow’ of solvent generated by the diffusion of the colloidal particle. As the
total translational momentum of the cell is equal to zero at all times, the translation of a
massive particle will induce a counter-current of solvent molecules in the opposite direction
which will reduce the self-diffusion coefficient of the colloidal particle. It is interesting that
table 1 shows that the rotational diffusion coefficient does not show a corresponding mass
dependence for theNclus = 256 cluster systems, possibly because there is no conservation
of rotational angular momentum in the simulation system. Previous simulations of massive
(but much smaller) solute particles in a solvent have revealed a relative insensitivity of the
translational diffusion coefficient to the mass of the cluster (or equivalently the ratio of the
colloidal particle density to that of the solute moleculeρc/ρs) (Rull et al 1989). Perhaps
surprisingly, the density of the nanocolloidal particle has virtually no effect on the value
of the self-diffusion coefficient at liquid-like solvent densities. This is in marked contrast
to the situation prevailing in dilute gases, where the self-diffusion coefficient is strongly
mass dependent (∼M−1/2). According to the Stokes–Einstein expression, the mass of the
particle is not expected to affect the diffusion coefficient. The inertia of the particle would
be expected to have an influence when the ideal of short Brownian steps does not apply and
longer steps between ‘collisions’ become significant (i.e., the mean free path is no longer
infinitesimal compared to the diameter of the solvent molecule). This gradual change in
dynamics at progressively lower solvent number density is responsible for the transition



Diffusion of model nanocolloidal dispersions 10171

to dilute-gas-limit behaviour in the self-diffusion coefficient and the increasing sensitivity
to the value of the mass of the colloidal particle. The diffusion coefficient is, however,
sensitive to solvent bulk number density and to the size of the solute particle, and therefore
it would appear to be the mean free path of the colloidal particle in its collisions with the
surrounding solvent molecules that largely determines the value ofD.

The classical solution for the dependence ofD on sphere diameter and solvent viscosity
is the Stokes–Einstein (SE) relationship,

D = kBT

nπηsσc
(14)

where n = 3 for stick andn = 2 for slip boundary conditions, andηs is the solvent
viscosity. A plot ofD againstσ−1

c for the smooth and rough spheres is given in figure 6
for two solvent densities (ρs = 0.7 andρs = 0.9). The smooth colloidal particles fall closer
to the classical line predicted by the SE relationship, using the Newtonian shear viscosity
of the solvent obtained by the Green–Kubo method (Hansen and McDonald 1986). Within
the statistical uncertainty, theD-values of the smooth and rough particles fall on the same
line at the higher solvent density. However, atρs = 0.7 theD-values of the rough particles
are systematically lower than those of the equivalent-diameter smooth particle. The origin
of this difference may lie in the differences in the solvent structure around the smooth and
rough colloidal particles at the lower density. Figure 7 compares the density profile for
σc ' 6.0 colloidal particles in the two cases for (a)ρs = 0.7 and (b)ρs = 0.9 solvent
densities. The smooth particle presents a sharper boundary with the solvent, and against
which layers of solvent can more effectively organize. The rough particle has a more
diffuse interaction with the solvent which nevertheless could be more effective at ordering
the solvent around it, embedding the model colloidal particle within a solvent cage and hence
slowing down the translational diffusion to a greater extent by virtue of an enhancement
of the local viscosity experienced by the particle. Despite the more pronounced radial
density oscillations for the smooth colloidal particles, it is possible that the rough particle
is more effectively constrained by its solvent cage. Alternatively, one could interpret the
reduction in the diffusion coefficient as an increase of the effective hydrodynamic radius of
the particle as a result of this cage effect (i.e., the nanoparticle ‘drags’ some of the solvent
with it as it translates, thereby increasing its effective size). Whatever the precise cause, its
consequences will probably diminish as the nanocolloid approaches micron dimensions and
the ratio of the surface layer volume to colloidal particle volume diminishes. In this limit,
the bulk shear viscosity of the solvent will become the relevant parameter governing the
diffusion of the colloidal particle, rather than the local viscosity in the surface layer around
the colloidal particle. The diffusion coefficients will start to follow the classical prediction
line given in figure 6—rather than having a non-zero intercept as implied by the data in this
figure.

The higher-solvent-density states (figure 7(b)) show oscillations further out in distance
from the centre of the colloidal particle but are otherwise qualitatively the same as for the
lower-densityρs = 0.7 state. There is more freedom for solvent reorganization around the
colloidal particle for the lower solvent density, and this is possibly why the differences
between the self-diffusion coefficients between rough and smooth particles are greater at
ρs = 0.7. In our comparisons with the macroscopic sphere case of equation (14) we have
assumed that stick boundary conditions apply in both smooth and rough cases, which is not
necessarily the case. If slip boundary conditions (i.e.,n = 2) were used in equation (14)
the difference would be even greater.
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(a)

(b)

Figure 7. Normalized radial density profiles around smooth (S) and rough (R)Nclus = 120
colloidal particles, both withσc ' 6.0, at densities of (a)ρs = 0.7 and (b)ρs = 0.9.

4.3. Orientational behaviour

We now consider the reorientational motion of the rough particle. TheP1-function in
equation (5) andCω(t) were calculated for each structured nanoparticle. Typically, the
Cω(t) decayed in a monotonic fashion except for the clusters that had a low mass density
and were relatively small. In these cases theCω(t) exhibited a shallow negative region at
intermediate times (see figure 8) symptomatic of strong fluctuations in angular acceleration.
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Figure 8. The angular velocity autocorrelation function,Cω(t), for Nclus = 37 andρs = 0.9,
andNclus = 256 andρs = 1.0.

Figure 9. Comparison ofCω(t) andC1(t) for the stateN = 8000,Nclus = 256,mc/m = 1.0
andρs = 0.9.

As the size of the cluster and/or the solvent number density increased, this function decayed
more slowly with time, losing the backscattering negative lobe. For the clusters studied here
there is a clear separation of timescales between angular velocity relaxation and orientational
relaxation as may be seen in figure 9 which shows the normalizedCω(t) andC1(t) for a
256-atom cluster withmc/m = 1.0 in a solvent at a number density ofρs = 0.9. The figure
shows that there is slow reorientational relaxation (C1(t)) compared with the corresponding
angular velocity functionCω(t) for all of the clusters (i.e.,τu � τω). The relaxation time
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τω decreases with increasing number density of the solvent whereas theτu increases with
solvent density.

There are many models for molecular reorientation in the literature (e.g., see Clarke
1978). It is possible to make general statements about the applicability of these models to
the nanoparticles studied here by comparingτu = 1/2Drot andτω with τrot = (I/kBT )

1/2,
the time taken for a free rotator to reorientate through one radian. For the nanocluster
we have the following expression for the moment of inertia:I = 2〈r2

m〉Nclus(mc/m)/3
which gives τrot /(mc/m) = 4.6, 10.0, 20.9 and 39.4 for Nclus = 20, 50, 120 and 256.

Table 2. Summary of the relaxation times for the simulated rough-colloidal-particle systems.
Key: ρs , solvent density;Nclus , number of LJ atoms in the cluster;I is the moment of inertia
of the cluster obtained from the formulaI = 2〈r2

m〉Nclus(mc/m)/3 wherer2
m is the mean square

radius calculated from equation (3). The reorientation relaxation time,τu = 1/2Drot , and
angular velocity relaxation time,τω from equation (8), are presented. Withτrot = (I/kBT )

1/2

we define the reduced correlation times,τ ∗ω = τω/τrot and τ ∗u = τu/τrot ; mc/m is the ratio of
the mass of an atom in the LJ cluster (all the same) to that,m, of a WCA solvent molecule.
The relaxation times are estimated to be uncertain to typically±5%.

ρs Nclus mc/m 〈r2
m〉 I τrot τω τu τ ∗ω τ ∗u

0.90 20 0.20 1.60 4.3 2.1 0.018 107 0.009 51.8
0.90 20 1.00 1.60 21.3 4.6 0.084 130 0.018 28.3
0.90 20 4.00 1.60 85.1 9.2 0.329 127 0.036 13.9

0.50 50 1.00 3.02 101 10.0 1.090 44 0.109 4.4
0.60 50 1.00 3.02 101 10.0 0.718 63 0.072 6.3
0.70 50 1.00 3.03 101 10.1 0.464 117 0.046 11.7
0.80 50 1.00 3.01 101 10.0 0.262 183 0.026 18.3
0.90 50 1.00 3.01 100 10.0 0.139 369 0.014 36.8
1.00 50 1.00 2.99 100 10.0 0.053 930 0.005 93.2

0.70 120 0.20 5.49 87.9 9.4 0.163 325 0.017 34.7
0.70 120 0.50 5.49 220 14.8 0.386 319 0.026 21.5
0.70 120 1.00 5.49 439 21.0 0.820 313 0.039 14.9
0.70 120 2.00 5.49 878 29.6 1.318 329 0.044 11.1
0.70 120 4.00 5.49 1757 41.9 3.082 340 0.074 8.1

0.80 120 0.20 5.48 87.7 9.4 0.077 564 0.008 60.2
0.80 120 0.50 5.48 219 14.8 0.199 537 0.013 36.2
0.80 120 1.00 5.48 438 20.9 0.392 513 0.019 24.5
0.80 120 4.00 5.48 1754 41.9 1.775 511 0.042 12.2

0.90 120 0.20 5.47 87.5 9.4 0.041 1132 0.004 121.0
0.90 120 0.50 5.47 219 14.8 0.100 1140 0.007 77.1
0.90 120 1.00 5.47 437 20.9 0.185 1191 0.009 57.0
0.90 120 2.00 5.47 875 29.6 0.372 1214 0.013 41.1
0.90 120 4.00 5.47 1749 41.8 0.781 1166 0.019 27.9

0.70 256 0.20 9.02 308 17.5 0.230 692 0.013 39.4
0.70 256 1.00 9.04 1543 39.3 0.998 693 0.025 17.6

0.90 256 0.20 9.10 311 17.6 0.066 2523 0.004 143.1
0.90 256 5.00 9.09 7756 88.1 1.611 2345 0.018 26.6

1.00 256 5.00 9.06 7729 87.9 0.522 6861 0.006 78.0
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These are typically short compared toτu but long compared toτω. Defining the following
normalized relaxation times:τ ∗ω = τω/τrot and τ ∗u = τu/τrot , we have, typically,τ ∗ω � 1
andτ ∗u � 1 which corresponds to so-called small-step diffusion and is consistent with the
wide separation between the relaxation timescalesCω(t) andC1(t) observed for example
in figure 9. (Actually, it is the torque autocorrelation function that is usually used to
establish the different types of orientational relaxation behaviour. As this has a shorter
relaxation time,τT , than that of the angular velocity, the trend will be even more pronounced
than that adequately revealed usingτω.) Table 2 shows thatτ ∗ω and τ ∗u are sensitive to
nanocolloid mass density, size and solvent number density. As the mass density of the
cluster increases,τ ∗ω increases andτ ∗u decreases, indicative of greater persistence in angular
velocity and longer-lived ‘collision’ events (‘extended diffusion’). A similar trend occurs as
the solvent number density decreases. Therefore the small-step limiting diffusion behaviour
is most readily achieved at high solvent number densities, low cluster masses and for larger
clusters.

Figure 10. A plot of Drot obtained fromCω(t) from equation (13), calledDrot (ω), against
Drot obtained fromC1(t) and equation (10), calledDrot (u).

The rotational diffusion coefficients can be obtained either fromCω(t) or C1(t), which
we call Drot (ω) and Drot (u) respectively. The former method is more convenient for
evaluation as it involves an integral of a rapidly decaying function whereas the latter
approach (equation (10)) requires a numerical differentiation and some ‘judgement’ in
determining the extent of the inertial regime at short time. Nevertheless, both routes give
statistically the same value for the rotational self-diffusion coefficient, as may be seen in
figure 10 which plotsDrot (u) againstDrot (ω) for all of the systems considered here.

As for the translational degrees of freedom, the mass density of the cluster has a
pronounced influence on the short-time rotational dynamics, as may be seen inCω(t).
For example, the less massive particles exhibit backscattering in angular velocity but this
disappears for more or less equal solvent and nanoparticle mass densities (i.e.,mc/m = 1).
This is reflected in aτω that is extremely sensitive to cluster mass density (see table 1).
The less massive clusters have the smallestτω-values because of the negative backscattering
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Figure 11. The dependence ofDrot obtained fromC1(t) on cluster density forNclus = 120
particles at three solvent densities.

region at short time leading to a partial cancellation of the positive area under the function.
(This effect is compensated for almost exactly in the value of the rotational diffusion
coefficient because the moment of inertia is proportional to the cluster mass density i.e.,
the value ofmc/m. We haveDrot = kBT τω/I .) In contrast, the correspondingC1(t)

are remarkably insensitive to this parameter, which is reflected in a weak dependence of
Drot on the mass density of the cluster (as forD) but a strong solvent number density and
particle size dependence ofDrot . Figure 11 shows that, as for the translational self-diffusion
coefficient, the density of the model nanocolloid in the range covered has little influence,
within the simulation statistics, on the value of the rotational diffusion coefficient. In fact,
the ρs = 0.7 results show even less colloid density dependence than the corresponding
translational self-diffusion coefficients (compare figures 5 and 11).

The classical solution for rotational diffusion of a macroscopic sphere in a solvent is
the Stokes–Einstein–Debye (SED) relationship,

Drot = kT

8πηsa3
(15)

for stick boundary conditions. The cluster radius,a, for each cluster was obtained from
equation (4). The SED relationship indicates that a plot ofDrot againstσ−3

c should have a
slope ofkT /πηs . Figure 12 shows this plot for theρs = 0.7 andρs = 0.9 fluids. At both
solvent densities, the simulation data fall reasonably close to the classical lines, especially
for larger clusters.

5. Conclusions

In this report we have continued our investigation of the dynamical behaviour of spherical
nanocolloids in a solvent represented at the molecular level using the molecular dynamics
technique. This work builds upon an earlier study (Heyeset al 1996) in which technical
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Figure 12. A plot of Drot againstσ−3
c . The lines correspond to the SED prediction of equ-

ation (15) with a slope ofkT /πηs . Data for theρs = 0.7 andρs = 0.9 fluids are given, with
ηs = 0.84 and 3.05 respectively (see the legend to figure 6).

aspects of the simulation strategy were developed. The translational and rotational diffusion
of the particles have been characterized using time correlation functions, their derived
relaxation times and diffusion coefficients. The angular velocity and angular reorientation
of the clusters were also computed for the various solvent and nanoparticle specifications.

Simulations were carried out with both smooth and atomistically rough clusters of atoms
with variable dimensions compared to the solvent molecule, using the WCA interaction
between the colloid and the WCA solvent molecules. Nanocolloidal particles up to an
order of magnitude larger than those of the solvent molecule were simulated. The effects of
solvent and colloidal particle density, and colloid size on the translational and rotational self-
diffusion coefficients were investigated. At liquid-like densities (ρs = 0.9) the translational,
D, and rotational,Drot , self-diffusion coefficients for the nanocolloids of all sizes were
statistically independent of the ratio of colloidal to solvent particle density in the range 0.2–
4.0 explored. The rotational diffusion was in accord with the classical ‘small-step’ limit. As
solvent density decreased the translational self-diffusion coefficients of the colloidal particles
showed more evidence of a decrease with increasing colloid mass density than did the
rotational self-diffusion coefficients. BothD andDrot decreased with increasing size of the
colloidal particle and increasing solvent density, largely according to the respective classical
solutions given by the Stokes–Einstein and Stokes–Einstein–Debye equations. Differences
in the translational diffusion coefficients of smooth and rough colloidal particles were not
statistically significant atρs = 0.9, but atρs = 0.7 were lower for the rough particles,
suggesting a larger hydrodynamic radius than the nominal diameter of the colloidal particle,
or alternatively some significant solvent restructuring around the colloidal particle at the
lower solvent density which was not feasible at higher density owing to excluded-volume
constraints within the solvent. Although not carried out here, it would be interesting to
investigate the solvent’s local structure around the surface of the nanoparticle and also the
hydrodynamic radius of the particle by a more direct method.
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